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© Probability Space
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Probability Space

A probability space is a triplet (2, F, P):
e (2, sample space: A set of all possible outcomes.
e A set of some outcomes, as a subset of €, is called an event.

e F, o-algebra (or o-field): A set of events, i.e., a set of some
subsets of €2, such that:

0 QcF;
® Closed under complementation: If A € F, then A® € F;
© Closed under countable unions:T If A, € F,i=1,2,...,is a

countable sequence of sets, then U2, A; € F.

e P: F — [0, 1], probability function (or probability measure):
A function that assigns probabilities to events, such that:
® P(A) €[0,1] forany A € F;
O PN =1
® Countably additive: If A; € F,i=1,2,..., is a countable
sequence of disjoint sets, then P(U2, A;) = > P(4;).

Tlt implies that F is also closed under countable intersections.
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Probability Space

e Example 1: Flip a fair coin.
e QO ={H (head), T (tail)};
o F={0,{H},{T} Q}
o« P(0) =0, P({H}) =1/2, P({T}) =1/2, and P(Q) = 1.

e Example 2: Draw a ball out of 3 balls (red, green, blue).
e = {R (red), G (green), B (blue)};
« 7 ={0.{R}, {G}, {B}, {R.G}, {R B}, {G,B}, Q};
* P(0) =0, P({R}) = P({G}) = P({B}) = 1/3,
P({R,G}) =P({R,B}) =P({G,B}) = 2/3, and P(Q) = 1;
o F1 ={0,{R},{GB}, 2}, F» ={0,{G},{R,B},Q}...

e Example 3: Randomly “draw” a number in [0, 1]
e Q=10,1];
o Fr={0,[0,a),[a,1],9Q}, Fo={0,(0,a), {0} U[a, 1], Q}...
e A more practical and interesting F is the one that contains all
intervals (no matter open or closed) on [0, 1].
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Probability Space

Independence of Events: Two events A and B in F are
called statistically independent events when

P(AN B) = P(A) P(B).

Conditional Probability: If A and B are events in F and
P(B) > 0, then the conditional probability of A given B,
denoted as P(A|B), is

P(A|B) = %
e Bayes' Rule:
ST

Events A and B are independent <= P(A|B) = P(A).
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Probability Space

e For more than two events:

[@®)BY-sa |

e Mutual independence (or collective independence) intuitively
means that each event is independent of any combination of
other events;

e Pairwise independence means any two events in the
collection are independent of each other.

Sets Ay, ..., Ay are (mutually) independent if for any
I'c{1,...,n} we have P(MicrA;) = [[ic; P(As).

Warning: Only having P(N_, A4;) = [[;~, P(4;) is not
sufficient!

Sets Ay, ..., A, are pairwise independent if for any i # j we
have ]P)(Al N Aj) = ]P)(Al) ]P)(A])

Clearly, mutual independence implies pairwise independence,
but not vice versal!
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Probability Space » Borel-Cantelli Lemma

Consider a sequence of sets {A4,, : n > 1}.

(The First) Borel-Cantelli Lemma

If >° P(A,) < oo, then P(4, i.0.) = 0, where “i.0.”
denotes “infinitely often”.

The Secon Borel-Cantelli Lemma

If > P(A,) = oo and {A4,} are independent,’ then
P(A, i0.) =1

e Remark: For event A, if P(A) = 1, then we say A happens
almost surely (a.s.).

TThe assumption of independence can be weakened to pairwise independence, with more difficult proof.
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® Random Variables & Distributions
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Random Variables & Distributions » Scalar

¢ A random variable (RV) is a function from a sample space
into the set of real numbers R.

e Formally, given the probability space (2, F, P), a RV X is a
function X : Q — R, such that for any a € R,

{weQ: X(w) <a} eF.

e For a particular element w € Q, X (w) is called a realization of
X.

e Usually, we will simply denote X (w) as « when w is not
explicitly shown.

e A popular convention is to denote the RVs by upper-case
letters (e.g., X and Y) and their realizations by lower-case
letters (e.g., = and y).
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Random Variables & Distributions » Scalar

e Example 1": Let X(H) =0, X(T) = 1.

e Example 2"
e Under (Q, F,
e Under (Q, F1,

P), let X(R) =0, X(G) =1, and X(B) =
P), let X(R) =0, X(G) =1, and X(B) = 1.

e Example 3"
. _J0, ifwel0,a),
Under (2, F1, P), let X (w) = {1’ ifwe ol

e Under (0, F, P), let X(w) = w for w € [0, 1].
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Random Variables & Distributions » Scalar

e The cumulative distribution function (CDF) of a RV X,
denoted by F': R — [0, 1], is defined by

Fz) =P(X <z)=P{we N: X(w) <z}), Vo eR,

and the following is satisfied:

e limyy oo F(z) =0 and lim,, o F(z) = 1;

e F(z) is nondecreasing in z;

e F(z) is right-continuous, that is, for any xg € R,
liim F(x) = F(xp).

Tl
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Random Variables & Distributions » Scalar

e A RV X is said to be discrete if the set of its possible values
is countable.

e The probability mass function (pmf) of a discrete RV X is
given by

plz) =P(X =2)=P{we Q: X(w) =2x}), Yz €R,

and the following is satisfied:

e p(x) >0 for all z € R;
° Zme]Rp(m) = 1

e Itis easy to see that F/(z) =3 ¢ (oo 41 P(¥)-
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Random Variables & Distributions » Scalar

e A RV X is said to be continuous if there exists a probability
density function (pdf) f(x) such that

Flz)=P(X < z) = /_ F()dt, ¥z € R,

and the following is satisfied:

e f(z) >0 forall z € R;
o [T F)dt = 1.

o Observe that L F(z) = f(z).
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Random Variables & Distributions » Vector

e The joint CDF of RVs X and Y, denoted by F' : RxR — [0, 1],
is defined by

F(z,y) =P(X <z,Y <y)
=P{w: X(w) <z}n{w:Y(w) <y}), Vo,y € R.
e For discrete RVs X and Y, the joint pmf is given by
p(z,y) =P(X =2,X =y)
=P{w: X(w) =z} N{w:Y(w) =y}), Vz,y € R.

e For continuous RVs X and Y, the joint pdf is f(x,y) such
that

F(z,y) = /_y /_x f(t, u)dtdu, Vo, y € R.

e Observe that 82(5;;};3/) = f(x,y).
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Random Variables & Distributions » Vector

e Given the random vector (X,Y)T, the distribution of X or Y
is called the marginal distribution.

e The marginal CDF of X is Fx(z) = F(z, + o).

o If (X,Y)7 is discrete, the marginal pmf of X is
px(x) =Y plx.y).

yEeR

e If (X,Y)7 is continuous, the marginal pdf of X is

+o0

fx(z) = f(z,y)dy.

—00

e For Y, its marginal CDF, and pmf or pdf, can be determined
similarly.
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Random Variables & Distributions  » Conditional Distribution

o If (X,Y)7 is discrete, for any y such that P(Y = 3) = py (y)
> 0, the conditional pmf of X given that Y = y is defined as

p(z,y)
Py (y)

pzly) =P(X =2y =y) =

o If (X,Y)T is continuous, for any y such that fy(y) > 0, the
conditional pdf of X given that Y = y is defined as

_ flzy)
faly) = fr(y)’
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Random Variables & Distributions  » Conditional Distribution

Intuitively, f(z|y) can be understood as follows (although it is not
the most rigorous approach):

@ Note that

F(z|lY =y) = iiinoF(ﬂY between y and y + A)

~ lim P(X < z,Y between y and y + A)
A—0  P(Y between y and y + A)
_ limao[F(z,y +A) = F(z,y)]/A
lima—o[Fy (y + A) — Fy (y)]/A

B %F(m,y) B (%fi’oo ffoo f(t,u)dtdu
TEIRG) =0
I fty)dt
B fy(y) .

2 [0 Fty)dt 2,
® Then, f(zly) = FF(aly =y) = Py = Fo
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Random Variables & Distributions » Independence

e Two RVs X and Y are said to be statistically independent,
which can be denoted as X | Y, when, for any z,y € R,

F(z,y) = Fx(x)Fy(y), or,
p(x,y) = px(z)py (y), or,
flx,y) = fx(2)fy(y).

e X and Y are independent <—
o p(zly) = px(z) or f(zly) = fx(x) regardless of the value y;
e P(Xe€AYeB)=P(X € A)P(X € B) forany A, B C R.
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Random Variables & Distributions » Independence

e For more than two RVs X1, ..., X, the joint CDF, joint pmf
or pdf, and the marginal pmf or pdf, are defined analogically.

e RVs Xj,..., X,, are (mutually) independent if

F(z1,...,zn) = Fx,(x1) X -+ X Fx,, (zp), of,
p(z1, ... xn) = px, (1) X -+ X px,, (Tn), oF,
flxy, ..o xn) = fx, (1) X -+ X fx, (zn).

e RVs X1,..., X, are pairwise independent if for any i # 7,
X L X
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© Expectations
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Expectations

The expectation, or expected value, or mean, of a RV X is
defined as
E[X] = / X (w)d P(w)
Q

provided that [, | X (w)|dP(w) < oo or X >0 a.s., where the
integral is the Lebesgue integral, rather than the Riemann
integral.

For function h: R — R, E[h = [o MX(w))dP(w).

If X is a discrete RV:
* E[X] = ¥, cp 2p(a)
* E[A(X)] = >y ep h(z)p().
If X is a continuous RV:
* E[X] = [T af(z)dz
 ER(X)) = [ h(a:)f(x)dx-

[Q)svsa |
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Expectations

e For integer n, E[X™] is called the nth moment of X, and
E[(X — E[X])"] is called the nth central moment of X.

Some special moments:
e Mean (1st moment): p = E[X].
e Variance (2nd central moment):
o? = Var(X) = E[(X — E[X])?] = E[X?] — (E[X])2.

e Linear association:
¢ Covariance:
Cov(X,Y) =E[(X-EX])(Y-E[Y])] =E[XY]-E[X]E[Y].
« Correlation: p(X,Y) = ——XY)

v/ Var(X) Var(Y)
Ingeneral, X LY Z=Z p(X,Y)=0 < Cov(X,Y)=0.

If (X,Y)T follows a bivariate normal distribution,’ then
X1lY < pX,)Y)=0.

TCAUTION: It means MORE than that X and Y both follow a normal distribution! More details latter.
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Expectations

The conditional expectation of X given Y =y is

> zer T(Z]Y), if X is discrete,
[T af(zly)de, if X is continuous.

E[X]y] := {

The conditional variance of X given Y =y is

Var(X[y) = E[(X — E[X])?]y] = E[X?|y] - (E[X|y])*.

If X LY, then E[X|y] and Var(X|y) are functions of y.

If X LY, then E[X]Y] and Var(X|Y) are also RVs, whose
value depends on the value of Y.

If X 1Y, then E[X|y] = E[X|Y] =E[X], and Var(X|y) =
Var(X|Y) = Var(X).
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Expectations

E[aX + bY] = aE[X] + bE[Y].

Var(aX + bY) = a® Var(X) + 2ab Cov(X,Y) + b? Var(Y).

Cov(aX +bY,cW 4+ dV) = acCov(X, W)+
ad Cov(X,V) 4+ bcCov(Y, W) + bd Cov(Y, V).

E[E[X|Y]] = E[X].

Var(X) = E[Var(X|Y)] + Var(E[X|Y]).

If X LY, then E[XY] = E[X]E[Y].
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O Common Distributions
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Common Distributions » Discrete

e X ~ Bernoulli(p) or Ber(p), if

1, with probability p,
X = 0, 1].
{O, with probability 1 — p, pel0]

* E[X] =p, Var(X) = p(1 —p).

e The value X =1 is often termed a “success” and p is referred
to as the success probability.

¢ Y ~ binomial(n, p) or B(n, p): The number of successes
among n (mutually) independent and identically
distributed (iid) Ber(p) trials.
e Y =" X, where X; ~ Ber(p) are iid.
cp(y) =P =y)= ()0 -p)"% y=01...n
e E[Y] =mnp, Var(Y) = np(1 — p).

e If Y1 ~ B(ny,p) and Yy ~ B(ng, p) are independent, then
Yi+Yy ~ B(m + ng,p).
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Common Distributions » Discrete

e Y ~ negative binomial(r, p) or NB(r, p): The number of iid
Ber(p) trials to obtain r successes.
s oy =PY =y)= () A -p)?, y=ror4l.

« EY] =r+r(1—p)/p Var(Y) =r(1—p)/p*
e When r =1, it becomes the geometric distribution.

¢ Y ~ geometric(p) or Geo(p): The number of iid Ber(p) trials
to obtain the first success.
s py) =P =y)=p(l-p¥", y=12....
« E[Y]=1/p, Var(Y) = (1 - p)/p*.

e Memoryless Property: For integers s > t,
P(Y>sY>t) PY>s) (1-p)° —(1—ppt
PY >t)  PY>t) (1-pt o P

=P(X >s—t).

P(Y > s|]Y > t) =

e If Y1 ~ NB(r1,p) and Yo ~ NB(r9, p) are independent, then
Yi+Yy ~ NB(T1 + 7’2,])).
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Common Distributions » Discrete

e Poisson distribution is often used to model the number of
occurrence in a given time interval.

e One of the basic assumptions is that, for very small time
intervals, the probability of an occurrence is proportional to
the length of the time interval.t

e X ~ Poisson(\) or Pois(\), with A > 0, if
AN

plx) =P(X =x) = o x=0,1,....

o It can be verified that Y7 ( p(z) = 1.
o E[X] =), Var(X) = A\

e If X1 ~ Pois(A1) and Xy ~ Pois(\2) are independent,

o X5+ Xy ~ Pois(A1 + A2);
o Given X1+ Xo=n, X ~ B(n, )\1/()\1 + )\2)).

TSee more detailed discussion in Lec 3.
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Common Distributions » Continuous

e X ~ Uniform(a, b) or Unif(a, b) with a < b, if its pdf is given
by

) = {ﬁ if © € [a, b],

0, otherwise.

* E[X] = 52, Var(x) = U,

e X ~ exponential(A) or Exp(A), with A > 0, if its pdf is given

by
f(z) =X, z€0,00).
e \is called the rate parameter.
e Flz)=1-e™ PX >1)=1-F(z) =e .
o E[X] =1/ Var(X) =1/)2

Memoryless Property: For s >t > 0,
P(X>s5X>t) PX>s) e

P(X>t)  P(X>t) e
=P(X >s—1t).

—A(s—t)

P(X > s|X >t) = =e
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Common Distributions » Continuous

e If X; ~Exp(A1) and X3 ~ Exp(A2) are independent, then
min{ X7, Xo} ~ Exp(A1 + A2).

o If X ~ Exp()), then for a > 0, Y := X/ ~ Weibull(a, 3)
in shape & scale parametrization with 8 = (1/A)Y/®, whose

df i
pdf is Fly) = aB oy e WAy e (0, 00).

e Erlang(k, A) or Erl(k, \), with k being a positive integer, is a
generalized version of %XP(A)' whose pdf is

flz) = (k:)i 1)!.%'k_16_)\x, x € [0, 00).

o E[X] = k/\, Var(X) = k/A2.
« k=1=> Exp()).

o If X; ~Erl(ky, A) and X5 ~ Erl(ko, \) are independent, then
X1+ X9~ El“l(kl + ko, )\)

o If X ~ Erl(k, ), then ¢X ~ Erl(k, \/c) for ¢ > 0.
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Common Distributions » Continuous

e X ~ Gamma(a, A) in shape & rate parametrization with
a, A > 0, if its pdf is given by

o

flz) = F)(\a) e e g e [0, 00).

e E[X] = a/\ Var(X) = a/A\2

o ') := fooo t*~le~tdt is known as the gamma function.
e MNa+1) =al(a); I'(n) = (n — 1)!, for integer n. > 0.

e If X1 ~ Gamma(ai, A) and X5 ~ Gamma(ag, \) are
independent, then X; + Xy ~ Gamma(a; + ag, \).

o If X ~ Gamma(a, A), then ¢X ~ Gamma(a, A/c) for ¢ > 0.

e Important special cases of Gamma(a, \):
e «ais an integer = Erl(a, \); o = 1 = Exp(\);
e o =1p/2, where p is an integer, and A = 1/2 = chi-square
distribution with p degrees of freedom, denoted as X,Q,
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Common Distributions » Continuous

e Beta distribution is a very flexible distribution that in a finite
interval.

e X ~ Beta(a, #) with o, > 0, if its pdf is given by

flz) = = ;(za_’g))ﬁ 1, z € [0,1].
* E[X] = o/(a+B), Var(X) = pmiarsn-
. fo t*=1(1 —t)#~1dt is known as the beta function.
o e

NP Un
PR ||
o
uNnweh

RRRR o

e The Beta(a, 8) pdf is quite flexible
e a=104=1= Unif(0,1) e
e a>1,8=1= strictly increasing "~
e a=1,5 > 1= strictly decreasing
e a<1,p < 1= U-shaped
e a>1,4>1= unimodal 0
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Common Distributions » Continuous

e X ~ Student's t distribution with p degrees of freedom,
denoted as t,, where p is an integer, if its pdf is given by

ety 1

2
R.
B) pm 2 (Lt a2/

I'(
T

« E[X]=0ifp>1;
e Var(X) =p/(p—2) if p > 2.

e t1 is also known as the standard Cauchy distribution, or
Cauchy (0, 1), whose pdf is simply
1

f(x):m, z € R
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Common Distributions » Normal Distribution

e The normal distribution (sometimes called the Gaussian

distribution) plays a central role in a large body of statistics.
e X ~ normal distribution with mean 1 and variance o2,

denoted as N (u, 02), with o > 0, if its pdf is given by
1 _e-w?
flz) = e =, zeR
2o
e E[X] = pu, Var(X) = o2
o If X ~ N(u,02), then Z := (X — p)/o ~N(0,1).

e Z is also known as the standard normal RV.
* We often use ®(z) and ¢(z) to denote the CDF and pdf of Z.
o P(X <) = ®((x — u)/0).

o If X ~ N (i, c?), then a+ bX ~ N(a + bu, b>c?) for b > 0.

o If X1 ~N(u1,0%) and Xo ~ N (ug, 03) are independent,
then X1 + Xo ~ N (1 + pi2, 03 + 02).
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Common Distributions » Normal Distribution

o If Z~N(0,1), then Z2 ~ 2.

Proof. LetY := Z>. Fory € [0, 00),

Nl
P(Y <) = B2 <) =PV 22 Vi) = [ s =),

~Vi

Then,

F0) = 50 = 6V §-Vi — SV 3 (V)
= 20(5) 3, Vi = = Hrh

IfY ~ x}, ie, Y ~ Gamma(1/2,1/2), it means its pdf is

1 1 _w
fly) = TTen .
Var(3) F(%)
The proof is completed by showing that F fo t"zetdt = VT,
which can be seen if we convert to polar coordlnates. |
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Common Distributions » Normal Distribution

e If Z~N(0,1) and V ~ X?; are independent, then —2— ~ t,,.

VV/p

Proof. Since V ~ an by definition, its pdf is

(%)gvgflefév
r'(%)
Let Y := /V/p. For y € [0, c0),

fr(y) = d% P(Y <y)= ;y P(V < py’) = % /Opy fv()dv = 2pyfv (py®).

fv(v) =

, v E[0,00).

. z _z

LetT._m—Y.ForteR,

P <) =P(f <t) =KZ<tY) = [ PZ<u)fdy (Why?)
0

Then,

h@=%P@Sﬂ—Aw%MZSWh@WL
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Common Distributions » Normal Distribution

Proof. (Cont'd) Note that £ P(Z <ty) =& [ ¢(2)dz = yo(ty). So,

Jr(t) = /0 h yo(ty) fy (y)dy = /0 h yo(ty)2py fv (py®)dy

oo 1 42,2 (l)g p 1
= Iy - ——e 2 2 2 le 3y’ d
/0 Py \/ﬂ F(1,2,)(102»/ )2 Yy

1 1 (t2+p)y?
ST emE T p I [Tty

Let 2 := y2. Then, integration by substitution shows that

oo (t2+ ) 1 > p—1 ——(t +p)x 1 *° a—1_ —Az
/ yPe 2 p)y? dy / z 2 P)T A 7/ z% " e "Mdx,
0 T2 0 2Jo

where o := 21 and A := 1(#* + p). Recalling the pdf of I'(c, A), it is easy to
see that [ 2" e **dz =T'(a)/A". Finally,

1 _1=p py1 1 r(ztl)
fr(6) = (%)( )L/2 227 P '5(1/2)(p+1)/2(t22+p)(p+1)/2
T 1 .
B F(%) (pm)1/2 (1 4 t2/p) >+ /2"
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Common Distributions » Normal Distribution

e X = (Xy,...,X};)" is said to follow a k-variate normal
distribution, if every linear combination of X7, ..., X} follows
a (univariate) normal distribution.

e X is also called a (k dimensional) normal random vector.
o If k=2 X = (Xl,Xz)T is also said to follow a bivariate
normal distribution.

e X ~ a k-variate normal distribution, denoted as A/ (u, X), if
its joint pdf is given by
1

_ L) (x— k
f(ai)—We 2( ) ( ”),wER,

where |X| is the determinant of 3.
o = (1, ..,p)" =E[X] = (E[Xq],..., E[Xi])T € R
¢ ¥ = (%) =Cov(X, X) = (Cov(Z;, Z;)) € RF*k,
e 3 is a symmetric and positive definite matrix.
o X;~N(pi,o?),i=1,...k.
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Common Distributions » Normal Distribution

o If X ~ N(p,X) is k dimensional, then

e Z:=A1(X —p) ~N(0,I), where A satisfies & = AAT
(Cholesky decomposition), 0 € R*, and T € R¥*¥ denotes the
identity matrix.

« Z=(Z1,...,2)7, where Z; ~ N'(0,1), i = 1,..., k, iid,

e a+BX ~N(a+ Bu, BEBT).f

e Suppose X is a k dimensional random vector. Then,
X~ N X)
There exist 1 € RF and A € R¥*¢ such that X = u + AZ,
where Z ~ N(0, I) with 0 € R and T € R**¢.

o Such A must satisfy X = AAT.

fThe multivariate normal distribution will be degenerate if B does not have full row rank (B AN7{#ifk).
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Common Distributions » Normal Distribution

e Bivariate normal distribution: (X7, X2)" ~ N (u, X), where
p = (p1, p2)", and

5 _ Cov(X1, X1) Cov(Xq,X2) | . o? pPO102
o COV(XQ,Xl) COV(XQ,XQ) - pPO102 0’% '
and the joint pdf is
_
2no1024/1 — p?

uﬁlp) [(ﬁa—lm )2_2,;(:516—1#1 ) (ma—zuz )_,_(xza—zuz 2] .

f(z1,22) =

X e

e Tosee p=0= X; L Xy, let p =0, and note

o — 2 o 2
flz1,22) = B ! 67%[(%) +( 20:2) ]
TO102
1 —mme)? 1 —(mamw2)?
=Vt L Xt ¢ T ia@)ix(m),
1 2
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Common Distributions » Normal Distribution

o If (X1, X2)T ~ N(p, X) and X; ~ N (i, 02), i = 1,2, then
X1+ X9 L X7 — Xo.

Proof. Note that
(XX ] (1 17[x] o[ x
r=xi )= AR e
Since B has full row rank, Y ~ N(Bu, BEBT), which is

non-degenerate. Hence, to prove X; + X5 1 X7 — X5, it suffices to
show Cov(X; + X5, X1 — X5) = 0. Note that

COV(Xl +X2,X1 —X2) COV(Xl,Xl) —COV(XQ,XQ)

=2 —02=0. [ |
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Common Distributions » Relationships

e There are many other relationships among various probability
distributions.
e See, for example, Song (2005)];
¢ Or, [Leemis & McQueston (2008)  and their online interactive
graph http://www.math.vm.edu/"leemis/chart/UDR/UDR.html|

Figure: Relationships Among 35 Figure: Relationships Among 76
Distributions (from [Song (2005)) Distributions (from [Leemis & McQueston (2008))

[@)BY-saA | SHEN Haihui MEM®6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time)


https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://doi.org/10.1080/07408170590948512
https://doi.org/10.1198/000313008X270448
http://www.math.wm.edu/~leemis/chart/UDR/UDR.html
https://doi.org/10.1080/07408170590948512
https://doi.org/10.1198/000313008X270448
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

© Useful Inequalities
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Useful Inequalities » Markov's Inequality
Markov's Inequality

Let X be a RV. If P(X > 0) =1 and P(X = 0) < 1, then,
for any r > 0,
E[X]

P(X >r) < ,
,

with equality if and only if

x=J" with probability p,
0, with probability 1 — p.

e Markov's Inequality has many variations, which are usually
called Chebyshev's Inequality.
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Useful Inequalities » Chebyshev's Inequality
Chebyshev's Inequality

Let X be a RV and g(z) be a nonnegative function. Then,
for any r > 0,

P(g(X) > r) < T

r
Chebyshev's Inequality

Let X be a RV. Then, for any r,p > 0,

E[|X|P

P(X]| 2 1) < DX
0.2

PX — 27 < T,

where 1 := E[X], and 02 := Var(X).
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Useful Inequalities » Tighter Bound for Z

e Chebyshev's Inequality is typically very conservative.

o If Z ~ N(0,1), a tighter bound is available: For any ¢ > 0,

20(—t) =P(|Z] > t) < \/> —t*/2,
20(—t) =P(|Z] > t) > \/5 e~ t/2
T 1-}-152 '

4
2P(—
a5 Chcbyshcv Bound
: Tighter Bound
Tighter Bound
3l
5
g
£ 251
=3
M
B 27
515
2
~ gL
0.5
ol -

(cc SHEN Haihui MEM®6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 46 / 61


https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Useful Inequalities » Jensen's Inequality

e A function g(x) is convex if
gz + (1= Ny) < Ag(z) + (1 = Ng(y),
for all x and y, and A € (0,1).

e A function g(z) is concave if —g(x) is convex.

Jensen's Inequality

Let X be a RV. If g(x) is a convex function, then
Elg(X)] = g(E[X]),

with equality if and only if g(z) is a linear function on some
set A such that P(X € 4) =1.
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Useful Inequalities » Holder's Inequality

Holder's Inequality

Let X and Y be any two RVs, and let p and ¢ be any two
positive numbers (necessarily greater than 1) satisfying

E +-=1
p q
Then,
|E[XY]| <E[IXY]] < {E[| X [P]}/P{E[ Y|4}/
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Useful Inequalities » Special Cases of Holder's Inequality

Cauchy-Schwarz Inequality (p = ¢ = 2)

Let X and Y be any two RVs, then

|E[XY]| < E[XY] < {E[.X "]}/ >{E[ Y "]} '/2.

Liapounov's Inequality (Y = 1)
Let X be a RV, then for any s > r > 1,

{EIXIY" < {BIX]TH.
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Useful Inequalities » Minkowski's Inequality

Minkowski's Inequality

Let X and Y be any two RVs. Then, for p > 1,

{EIX +Y[PI}/ < {E[X[PI}VP + {E[Y[P]} /7.

e Remark: The preceding Holder's Inequality (including its
special cases) and Minkowski's Inequality also apply to
numerical sums where there is no explicit reference to an

expectation.
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@ Convergence
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Convergence » Definition

Consider a sequence of RVs {X,, : n > 1} and another RV X.
e Convergence Almost Surely (a.s.), X, 23 X:

P(lim X, = X) = 1.

n—oo

e Convergence in Probability, X, 2 X:

lim P(]X,, — X| > ¢€) =0, for any € > 0.
n—oo

e Convergence in Distribution, X, i> Xor X, = X:
lim F,(z) = F(x), for any continuous point x of F'(x),
n—oo
where F), and F' are CDF of X, and X, respectively.
e Convergence in L” Norm (r € [1,00)), X, 2 x:
lim E(|X, — X|") =0,
n—roo

given E[|X,,|"] < oo for any n > 1 and E[|X|"] < cc.
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Convergence » Relationships

e Simple relationships:

X, 25 Y = X, X = X,=X

Is s>r>1 LI/
X, =X = X,—>X = E[|X,|]—E[|X]]

X, = aconstant¢c — X, Lo

X, X = E[X.] - E[X]

X, 25X = sups, |X;— X550

X, 2+ X <= For every subsequence X, (m) there is a
further subsequence X,,(my) such that X, (m;) <5 X.
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Convergence » Relationships

Question: If X,, = X or X, Ly X or X, 2% X, does it
imply E[X,,] — E[X]?
Monotone Convergence Theorem (MCT)

Suppose X,, =% X, and 0 < X; < X, < --- a.s.. Then
E[X,] — E[X].

Suppose X,, > Y a.s. for all n where E[|Y]] < co. Then
E[liminf, oo X,] < liminf, o E[X,]. In particular, if
X, > 0 a.s. for all n, then the result holds.
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Convergence » Relationships

Dominated Convergence Theorem (DCT)

Suppose X, % X, |X,,| <Y as. for all n, and E[|Y]] <
co. Then E[X,] — E[X].

e The DCT is still true if = is replaced by =

e An even more general result:
Suppose X, =+ X, | X,| <Y as. for all n, and E[|Y]"] < o0
with » > 1. Then, E[|X,,|"] < oo, E[|X]|"] < o0, and

X, 2 x.

[@)BY-saA | SHEN Haihui MEM®6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 55 / 61


https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Convergence » More Properties

e X =Y as., if any one of the following holds:
© X, =% X and X,, =3 Y;
* X, X and X, > Y;
e X, X X and X, 5 v

If X, 2% X and Y, 23 Y, then (X, Y,)T 2% (X, V)T
= aXn, + bV, £3 aX +0Y; X, Y, 25 XV, (Due to CMT)

If X,, 25 X and Y,, 25 Y, then (X,,,Y,)" 2 (X, Y)".
= aX, +bY, L aX +bY; XY, 2 XY. (Due to CMT)

If X, 25 X and V,, 25 Y, then (X,,, ¥;,)T 25 (X, Y)T.
= aX, +bY, =5 aX +bY,

None of the above are true for convergence in distribution.

If X, = X and Y,, = constant ¢, then (X,,,Y,)T = (X, ¢)".
= aXp +bYn = aX + be; XY, = cX. (Due to CMT; also known as
Slutsky's theorem)
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Convergence » Continuous Mapping Theorem

Continuous Mapping Theorem (CMT)

Consider a sequence of RVs {X,, : n > 1} and another RV
X. Suppose g is a function that has the set of discontinuity
points D such that P(X € D) = 0. Then,

Xn%X — g( )%g(X)
Xo B X = g(X.) D g(X);

X, =X = gX,=9X).

e CMT also holds for random vectors.

e Caution: For convergence in L" norm, stronger assumption of
g than continuity is required to ensure g(X,,) L, 9(X).
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@ Properties of a Random Sample
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Properties of a Random Sample

e Let Xq,...,X,, be arandom sample from a distribution with
mean p and variance o2 ie., X1,...,X, areiid, and
E[X;] = p and Var(X;) = o2 i=1,...,n

e Define

1 ¢ (X — X)?
=—-) X, and §?:= i i

. n—1
=1

e For a general distribution, the following is true:
® X is an unbiased estimator of y, i.e., E[X] = y;
@® 5?2 is an unbiased estimator of 02, i.e, E[S?] = 0%
© Var(X) = o?/n.

e If the distribution is A/(y, 02) we further have:
O X ~N(p0/n), ie, 2~ ~N(O01);
0 X 1 5%
0O (n- 1)52/02 ~ Xn1

X—u
o S/f
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Properties of a Random Sample » Law of Large Numbers

e For a general distribution, what can we say about the
distribution of X7

e Var(X) = o2 /n intuitively means that the randomness of X
vanishes and X concentrates around p when n gets large.

e Denote X as X, to explicitly indicate the effect of sample
size n.

Weak Law of Large Numbers (WLLN)

Suppose X7, ..., X, are iid with mean p and variance o2 <
oo.T Then, X,, % p.

Strong Law of Large Numbers (SLLN)

Suppose Xj, ..., X, are iid with mean x and variance o? <
oo.t Then, X,, &5 4.

TMutuaI independence can be weakened to pairwise independence; o < co can be weakened to E[|X;|] < co.
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Properties of a Random Sample » Central Limit Theorem

e Note that for normal distribution, 7f ~ N(0,1),

regardless of the value of n.

e For a general distribution, what can we say about the

distribution of %fi?

e Note that E [X7\/i‘] =0 and Var( —£) =1, regardless of
the distribution and the value of n.

i

Central Limit Theorem (CLT)

Suppose X7, ..., X,, are iid with mean p and variance o2 ¢
(0,00). Then, B
X,
N Ve 0,1).
S = M)
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